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Abstract. TM2 is a global three-dimensional model of the atmospheric transport of 
passive tracers. The adjoint of TM2 is a model that allows the efficient evaluation of 
derivatives of the simulated tracer concentration at observational locations with respect 
to the tracer's sources and sinks. We describe the generation of the adjoint model by 
applying the Tangent linear and Adjoint Model Compiler in the reverse mode of automatic 
differentiation to the code of TM2. Using CO2 as an example of a chemically inert tracer, 
the simulated concentration at observational locations is linear in the surface exchange 
fluxes, and thus the transport can be represented by the model's Jacobian matrix. In many 
current inverse modeling studies, such a matrix has been computed by multiple runs of 
a transport model for a set of prescribed surface flux pattems. The computational cost 
has been proportional to the number of pattems. In contrast, for differentiation in reverse 
mode, the cost is independent of the number of flux components. Hence, by a single 
run of the adjoint model, the Jacobian for the approximately 8 ø latitude by 10 ø longitude 
horizontal resolution of TM2 could be computed efficiently. We quantify this efficiency 
by comparison with the conventional forward modeling approach. For some prominent 
observational sites, we present visualizations of the Jacobian matrix by series of illustrative 
global maps quantifying the impact of potential emissions on the concentration in particular 
months. Furthermore, we demonstrate how the Jacobian matrix is employed to completely 
analyze a transport model run: A simulated monthly mean value at a particular station is 
decomposed into the contributions to this value by all flux components, i.e., the fluxes into 
every surface model grid cell and month. This technique also results in a series of global 
maps. 

1. Introduction 

The radiative balance of the terrestrial atmosphere is sen- 
sitive to the concentrations of a number of trace gases. En- 
hanced concentrations of these greenhouse gases may thus 
lead to climate change. This sensitivity of climate to pertur- 
bations in the concentrations of greenhouse gases is being 
estimated by means of complex General Circulation Mod- 
els [Watson et al., 1995]. For predictions of climate change 
and its impacts, these models use the greenhouse gas con- 
centrations as boundary condition. To control the tempo- 
ral development of these concentrations, in turn, the sources 
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and sinks of the respective gases have to be predicted over 
the time period of interest. Hence reliable models of the un- 
derlying source and sink processes are urgently needed to 
determine the feedbacks of future climate changes on the 
concentration of the gases. Improving our knowledge about 
the past and current source and sink magnitudes would help 
to improve and verify these process models. 

At present, however, for many greenhouse gases such 
as carbon dioxide (CO2), carbon monoxide (CO), methane 
(CH4), or nitrous oxide (N20) not even the current magni- 
tudes of the natural as well as the anthropogenic sources and 
sinks can be quantified with sufficient accuracy [Houghton 
et al., 1995]. Especially for CO2 and CH•t, there have been 
considerable efforts to measure directly the exchange fluxes 
between the atmosphere and different source reservoirs (over 
oceans, e.g., by global ship campaigns or over land by means 
of eddy correlation flux measurements). Although this "bot- 
tom up" approach locally yields important information on 
the relevant processes, large uncertainties are induced by the 
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necessary assumptions for extrapolation to regional or global 
scales. 

During the last decades, an observational network of in- 
creasing density is being established to monitor the compo- 
sition of the atmosphere. Space-borne observations are also 
becoming available, as well as measurements on board of 
ships and air planes. In contrast to local flux measurements, 
if carefully selected, the atmospheric concentration observa- 
tions are representative for larger spatial scales. Hence such 
observations provide a means of estimating the sources and 
sinks on larger scales. Yet, in order to link the surface fluxes 
to the atmospheric concentration observations, a more or less 
sophisticated model of the atmospheric transport is needed, 
possibly in conjunction with a module of the relevant atmo- 
spheric chemistry for the species under consideration. The 
systematic search for spatiotemporal flux fields that, in com- 
bMarion with an atmospheric transport model, yield modeled 
concentrations close to observations is called inverse model- 

ing of the atmospheric transport. 
In order to alleviate future climate change, international 

negotiations are currently underway to curb the emissions of 
several of the greenhouse gases In this context, another per- 
spective for inverse modeling is to derive regional estimates 
of the source fluxes to monitor the success of these attempts. 

A number of research groups have investigated the fea- 
sibility of inversion of the atmospheric transport. The chal- 
lenge consists in using the information from a spatially sparse 
observational network in an optimal way to derive regional 
flux estimates together with an estimated range of confi- 
dence. Technically, this constitutes an underdetermined or 
"ill-posed" inverse problem: A unique solution can only be 
derived by use of additional assumptions (regularization of 
the inverse problem). The validity of these assumptions as 
well as the reliability of the transport model are crucial for 
the quality of the resulting estimates. Recently, a number 
of studies have been carried out to quantify the magnitude 
of the sources and sinks of CO2 [Enting and Mansbridge, 
1989; Enting et al., 1995; Ciais et al., 1995; Haas-Laursen, 
1997; Rayner et al., 1999; Bousquet, 1997; Law, 1999], CH4 
[Brown, 1993; Hein and Heimann, 1994; Brown, 1995; Hein 
et al., 1996], and halocarbons [Brown, 1993; Hartley and 
Prinn, 1993]. Differences among these studies mainly con- 
sist in the resolution of the transport models (two dimen- 
sional or three dimensional) and in the kind of assumptions 
for regularization, which is formally reflected by different 
inversion techniques [see, e.g., Enting, 1999]. 

Most of the relevant long-lived trace gases are either not 
(CO2) or only weakly (CH4, N20, halocarbons) coupled to 
tropospheric chemistry and thus, in a good approximation, 
can be inverted with a linearized representation of the trans- 
port. The transport then can be taken into account in the 
following way: The surface flux field is decomposed into 
prescribed spatiotemporal patterns ("source" or "flux" com- 
ponents) with unknown scaling coefficients. The transport 
model is separately run with each of the source components, 
and the contributions to the concentration signal at each of 
the monitoring sites and times are recorded. These contribu- 
tions can be interpreted as a discretized "impulse response" 

or "Greens function" that quantifies the response of the mod- 
eled concentration at the observational sites and time periods 
to unit changes in the magnitude of each source component. 

Formally, this impulse response or Greens function is the 
Jacobian matrix representing the first derivative of the mod- 
eled concentration at the observational sites and dates with 

respect to the coefficients of the source components. Com- 
putationally, for nf source components, nf model runs (or a 
single nf tracer run transporting emissions from each source 
component separately) have to be performed to determine 
the n f differential quotients constituting the columns of the 
Jacobian matrix. Hence the number of source components 
that can be considered is essentially limited by the computa- 
tional cost of the necessary transport model runs, i.e., by the 
model's complexity in terms of both the representation of 
the transport and possibly chemical processes and their spa- 
tiotemporal resolution. The additional assumption that the 
flux fields can be represented by a few patterns is thus inher- 
ent in this approach and, in part, determines the result of the 
inversion, because the internal shape of these patterns can- 
not be altered by the inversion. It is evident, though, that for 
many trace gases, such a restricted representation does not 
take account of the full spatiotemporal variability in an ap- 
propriate way. Further, in combination with inhomogeneous 
sampling (which for sparse networks is inavoidable), this 
low resolution in the space of unknowns may lead to biased 
estimates as recently investigated by Trampert and Snieder 
[1996]: For example, to adjust a well-observed fraction of a 
fixed prescribed pattern, the inversion algorithm must adjust 
the pattem's scaling factor, and the accompanying change in 
the pattem's less well-observed fraction can spoil the esti- 
mate of the pattem's integrated emissions. 

Here we present an alternative approach employing the 
adjoint of the three-dimensional transport model TM2. By 
means of the Tangent linear and Adjoint Model Compiler 
(TAMC, R. Giering, 1997, available at http://puddle.mit. edu/ 
•ralf/tamc) this numerical module has been constructed au- 
tomatically from the TM2 source code in the "reverse mode" 
of automatic differentiation. The principles of adjoint code 
generation and the adjoint model are introduced in section 3. 
Unlike most adjoint models applied in geosciences, which 
are constructed for iterative minimization of scalar valued 

functions, the adjoint of TM2 computes the derivative of a 
vector valued function. Hence, by a single run of the adjoint 
model the exact Jacobian is efficiently computed row by row, 
for which the cost is proportional to the number of observa- 
tions and nearly independent of the number of flux compo- 
nents. Hence, defining the flux patterns as the model grid 
cells, we are able to determine the Jacobian for the horizon- 
tal TM2 resolution of approximately 8øx 10 ø and monthly 
temporal resolution. 

The Jacobian is computed for the simulation of the quasi- 
stationary seasonal cycle of CO2, which is carried out in a 
cyclostationary setup of TM2 described in section 2. The 
rows of the Jacobian quantify the sensitivity of the modeled 
concentration at a particular station and month to the fluxes 
into every surface layer grid cell at every month. A visual- 
ization results in instructive maps of the potential influence 
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of the flux components for the respective months on a par- 
ticular observable. Prescribing for each grid cell the relative 
distribution of the fluxes over the year (e.g., constant flux), 
the information on potential influence can be condensed to 
one map for each monthly mean concentration. On the other 
hand, it is possible to derive the sensitivity of any partic- 
ular feature that can be computed from the monthly mean 
concentrations (e.g., the yearly mean concentration, or the 
magnitude of the seasonal cycle). For linear combinations 
of the monthly mean concentrations, in addition to compute 
potential influence areas, it is possible to decompose the fea- 
ture as modeled in a particular run according to the contri- 
butions resulting from the respective flux components. Be- 
sides these sensitivity studies, the Jacobian can be applied 
for tracer simulations instead of TM2 [Knorr, 1997], as long 
as the setup the matrix has been derived for is appropriate 
for the problem at hand. In a companion paper [Karninski 
et al., this issue], we present a Bayesian inversion on the 
TM2 grid, in which we combine the Jacobian with both at- 
mospheric CO2 observations and a priori information on the 
fluxes. 

In summary, the outline is as follows: In section 2 we give 
a description of the transport model and the setup for which 
we derive the matrix representation. The principles of ad- 
joint code generation and the adjoint model are introduced 
in section 3. Section 4 discusses the Jacobian and its use to 

compute sensitivities of particular features. Section 5 con- 
tains concluding remarks. 

2. Model of the Quasi-Stationary Seasonal 
Cycle 

A statistical analysis of the observed atmospheric CO2 
concentrations as performed, e.g., by Keeling et al. [1989] 
points out that, on timescales of a few years, the concept of 
a quasi-stationary seasonal cycle is appropriate to describe 
the prevailing features in the records. This quasi-stationary 
seasonal cycle component in the concentration, which es- 
sentially is composed of a global trend and a spatially vary- 
ing seasonal cycle, can be extracted from the observations as 
well as be simulated by atmospheric transport models. Since 
these transport models use CO• surface exchange flux fields 
as boundary condition, comparison of the observed and the 
simulated quasi-stationary seasonal cycles provides a way to 
constrain these fluxes. In this section we briefly introduce 
our transport model TM2, give a formal definition of the 
quasi-stationary seasonal cycle, and describe an appropriate 
setup of TM2 for simulation of the quasi-stationary seasonal 
cycle. The adjoint model, which is described in section 3, 
then evaluates the derivative of the function that is defined 

by this particular setup. Comparison of simulated concen- 
trations to observations is deferred to section 7 of Karninski 

et al. [this issue]. 
TM2 is a three-dimensional atmospheric transport model, 

which solves the continuity equation for an arbitrary num- 
ber of atmospheric tracers on an Eulerian grid spanning the 
entire globe [Heirnann, 1995]. It is driven by stored me- 
teorological fields derived from analyses of a weather fore- 

cast model or from output of an atmospheric general circula- 
tion model. Tracer advection is calculated using the "slopes 
scheme" of Russel and Lerner [ 1981 ]. Vertical transport due 
to convective clouds is computed using the cloud mass flux 
scheme of Tiedtke [ 1989]. Turbulent vertical transport is cal- 
culated by stability dependent vertical diffusion according to 
the scheme by Louis [ 1979]. Numerically, in each base time 
step the model calculates the source and sink processes af- 
fecting each tracer, followed by the calculation of the trans- 
port processes. 

The spatial structure of the model is a regular latitude- 
longitude grid and a sigma coordinate system in the vertical. 
The base "coarse grid" version of the model uses a horizontal 
resolution of approximately 8 ø latitude by 10 ø longitude (the 
horizontal dimension of the grid is ng= 36 x 24) and 9 
layers in the vertical dimension. The numerical time step of 
this model version is 4 hours. 

We apply TM2 to simulate the quasi-stationary seasonal 
cycle component in the CO,concentration at particular ob- 
servational sites. Therefore, prescribing the same monthly 
mean surface exchange flux fields f each year (cyclostafion- 
arity), and starting from zero initial concentration, TM2 is 
run by repeatedly cycling through the same meteorological 
fields of the year 1987 derived from analyses of the Euro- 
pean Center for Medium Range Weather Forecast (ECMWF), 
which are available to the model every 12 hours. These me- 
teorological fields have been adjusted in order to guaran- 
tee air mass conservation. This adjustment is also applied 
when switching from the fields of December 31 to January 
1 [Heimann, 1995]. We use monthly mean values of the 
simulated concentration for comparison with observations, 
because for shorter averaging periods the influence of syn- 
optic events, whose interannual variations are not resolved, 
would become too important. To extract time series of con- 
centrations cs at particular sites S, we first compute monthly 
means and then perform a bilinear interpolation in the hori- 
zontal from the TM2 grid to the exact location of $. 

With periodic boundary conditions and periodic transport, 
at every site, the simulated concentration as well tends to- 
wards a periodic state %. For a flux field with nonzero global 
annual mean, however, a linear trend is superimposed on 
the cyclostationary concentrations. The spatial variation of 
the magnitude of the annual mean flux as well as the effect 
of covarying seasonal cycles of fluxes and transport (recti- 
fier effect) described, e.g., by Pearman and Hyson [1980], 
Heirnann et al. [1986], Heirnann and Keeling [1989], and 
Denning et al. [1995] result in a spatially varying offset in 
c v. Formally, at the ith month, the simulated concentration 
cs, i can be composed as 

cs,i - Ss,i + b . ti q- as q- Rs, i, (1) 

where the single terms have the following meaning: The pe- 
riodic component has been split up into a function $s,i with 
yearly period ($s,i+ • - $s,i) and zero annual mean denot- 
ing the seasonal cycle as well as the spatial gradient contri- 
bution as. The long-term global linear trend b is related to 
the global annual mean flux f by 
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= a. f, (:) 

where a - 0.476 ppmv GtC- • is the conversion factor from 
mass to concentration for instantaneous global mixing as 
used by the transport model. The length of the time inter- 
val from the beginning of the simulation to the middle of the 
ith month ti is given by 

ß -- a. (3) 
12 

The residuum R$,i tends to zero as the length of the time 
series increases. 

We define the quasi-stationary seasonal cycle as 

c$,i - R$,i - $$,i q- b. ti q- as - cp,$,i q- b . ti. (4) 

To represent the quasi-stationary seasonal cycle, in addition 
to the global linear trend, 12 numbers per site are needed to 
quantify cp: 11 numbers for Ss (the 12th monthly value is 
determined by the other 1 l, because the sum must be 0) and 
1 number for as. As soon as R$,i is close enough to zero to 
be neglected, the quasi-stationary seasonal cycle can be ex- 
tracted from our modeled time series. Heimann and Keeling 
[1989] found that for tropospheric sites a spin up period of 
3 years is sufficient to achieve an appropriate degree of con- 
vergence in (4). The rate of convergence reflects the model's 
timescales of mixing. These timescales are commonly quan- 
tified in terms of exchange times [Rayner and Law, 1995; 
Law et al., 1996]. More precisely, the rate of convergence 
is determined by the longest exchange time, which, in the 
troposphere, is associated to the interhemispheric transport. 
Using the radioactive tracer SSKr, Jacob et al. [1987] found 
an interhemispheric exchange time of 1.1 years for a similar 
transport model, and Heimann and Keeling [ 1989] found 1.3 
years for TM2. Similar to Heimann and Keeling [1989] as 
"standard setup" of TM2, we choose to perform a four year 
ran, of which we extract the monthly mean concentrations 
in the last year. Together with the global annual mean flux, 
these 12 values per site determine the trend and the periodic 
component representing the quasi-stationary seasonal cycle: 

cp, s,i -- cs,i+a.12 -- ti+a.12' c•. ] (i -- 1, 12). (5) 

In the terminology of linear algebra, the standard setup in- 
cludes the choice of a basis (and its order) for the space of 
fluxes, i.e., a set of Ttf = 12 x ng vectors spanning the space, 
and f E •'•f is a representation of a particular flux vector 
by its components with respect to that basis. The compo- 
nents of f quantify the 12 monthly mean fluxes into each 
surface grid cell. In particular, the basis defines the physical 
units of the fluxes. Similarly, with respect to a basis in the 
space of concentrations, the output c E •,•c is a vector of 
nc - 12 x n8 components for the modeled monthly mean 
concentration at n8 observational sites. Since, in addition, 
every step in the simulation is linear, in the standard setup 
TM2 can be represented by a real nc x Ttf matrix T, and the 
application of the model to a flux field f can be written as 

c - Tf. (6) 

Using this matrix notation, the model of the quasi-stationary 
seasonal cycle in (5) reads 

cp - Tf -t.a. f, (7) 

where the vector t contains the values of ti. 

Concatenating b and cp to one vector Cqsc, these equations 
define a single matfix M: 

cq• -' M f . (8) 

Since our model neglects interannual variations in the 
transport as well as in the fluxes, a careful interpretation of 
Cq• is necessary: If it was interpreted as the quasi-stationary 
seasonal cycle of 1987, the year of the meteorological data, 
Cq• would be subject to both sources of error: For the spin- 
up years the difference in the meteorologies to 1987 as well 
as the differences in the fluxes to 1987 would be neglected. 
Instead, as in the study of Hein et al. [1996], Cqs• should be 
interpreted as a mean quasi-stationary seasonal cycle over 
a target period of a few years: Prescribing the mean flux 
over the whole target period, the error caused by the cyclo- 
stationary flux assumption decreases with increasing length 
of the target period. The error induced by using the me- 
teorology of a particular year to simulate the whole target 
period still remains. One might argue that a climatology, 
i.e., the meteorology of a mean year, should be used instead. 
In order not to underestimate the transport, however, TM2 
needs the synoptic scale variation, which is partly removed 
by the averaging procedure yielding the climatology. Hence, 
instead of using a mean meteorology, Cq•c is interpreted as 
one particular element of the ensemble of modeled concen- 
trations that would result from using the same mean fluxes 
but the meteorologies from the particular years of the tar- 
get period. This model error has to be taken into account 
when comparing Cqs• to the mean quasi-stationary seasonal 
cycle extracted from observations. Recent studies indicate 
that for monthly mean concentrations, this error is not too 
large: Knorr and Heimann [1995] investigated the impact 
of the meteorological data by comparing the seasonal cycle 
of the monthly mean concentration simulated with TM2 in 
the standard setup driven by the meteorology either of 1986 
or 1987. In their study they obtain only a minor difference. 
With a different model, Law and Simmonds [1996] explored 
the sensitivity of fluxes resulting from an inversion to the 
year of the meteorological fields. They also found small dif- 
ferences. In section 9 of Kaminski et al. [this issue] these 
results are confirmed by a comparison of the flux fields in- 
ferred from two inversions that we perform on the basis of 
meteorological data from 1986 and 1987. 

3. The Adjoint Model 

As explained in section 2, for the standard setup, TM2 
can be represented by a n• x nf matrix T. For given surface 
fluxes f, by a model ran, we are able to compute the result- 
ing concentrations at the station locations C,•oa - Tf. The 
matrix T itself is yet to be determined. 
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Following, e.g., Enting et al. [1995], by applying TM2 
subsequently to the Ttf standard basis vectors 

= = 

spanning •,•s, the matrix T could be computed column by 
column. This can be looked upon as a special case of approx- 
imating the Jacobian matrix that represents the first deriva- 
tive of a function by differential quotients: Owing to linear- 
ity of the model (1) differential quotients are not merely an 
approximation of the Jacobian, and (2) the Jacobian of T is 
equal to T. A disadvantage of this approach is that it re- 
quires Ttf runs of TM2, and thus is only feasible for a small 
number of flux components. In this section we introduce an 
alternative and for our matrix much more efficient approach: 
By the model adjoint to TM2 in the standard setup the Jaco- 
bian matrix is computed row by row in reverse mode. Here 
the computational cost depends on the number of rows, i.e., 
on no, rather than on the number of columns, i.e., on n f. 
This kind of an adjoint model is uncommon in geosciences: 
Usually, rather than vector valued functions, scalar valued 
functions are being differentiated. 

As will be sketched in section 3.1, for the implemen- 
tation of an adjoint model there are alternative strategies. 
Following the concept of differentiation of algorithms, the 
adjoint of TM2 has been directly derived from the model 
code. For automatic generation of this adjoint code, the Tan- 
gent linear and Adjoint Model Compiler (TAMC, R. Gier- 
ing, 1997, available at http://puddle.mit.edu/•ralf/tamc) has 
been applied. Briefly summarizing earlier work [Giering 
and Kaminski, 1998], section 3.2 introduces the concept of 
differentiation of algorithms. Finally, section 3.3 describes 
how TM2's adjoint has been generated. 

3.1. Adjoint Code Construction 

In the following we briefly sketch three approaches to 
adjoint code construction whose essential difference is the 
level on which the adjoint operators are constructed. 

1. Traditionally, as demonstrated, e.g., by Marchuk [1995] 
for various dynamical systems, adjoint models have been 
derived from the description of the system by a state func- 
tion of space and time, being the solution of what Marchuk 
refers to as the main problem. Typically, the main prob- 
lem consists of a set of differential equations together with 
initial and boundary conditions that, in the terminology of 
functional analysis, define a (potentially non linear) differ- 
ential operator T in an appropriate space of functions H. 
Spaces of this type are examples of Hilbert spaces, vector 
spaces furnished with an inner product (., ß ). For the atmo- 
spheric transport of a passive tracer, the main problem con- 
sists of the continuity equation, together with a prescribed 
initial concentration field and a prescribed source sink dis- 
tribution. Each observable quantity is represented by a lin- 
ear functional on the Hilbert space. The control variables, 
i.e., functions that characterize the system such as initial or 
boundary conditions or parameters in the formulation of T, 
are also elements of appropriate Hilbert spaces. The sen- 
sitivity of a quantity to a change in the control variables is 

then the Hilbert space or continuous analogue of the famil- 
iar first derivative in finite dimensional spaces, which will 
be discussed in section 3.2. Applying first-order perturba- 
tion theory to the particular problem at hand, a Hilbert space 
analogue of the chain rule is derived: The sensitivity of the 
functional's value to a change in the control variables can 
be composed of the sensitivity of the functional's value to a 
change in the state function and the sensitivity of the state 
function to a change in the control variables. As can be 
shown, this sensitivity of the state function with respect to 
a change in the control variables can be obtained as the solu- 
tion of the adjoint problem, being defined by the adjoint T* 
of the differential operator T. The adjoint operator can be 
defined by 

(9) 

for each ¾, • D(T*) C H and ck • D(T) c H, whenever 
the domain D(T) of T is 'large enough'. (If T is non linear, 
i.e., it depends on the state of the system, or it depends in a 
direct way on the control variables, an additional term quan- 
tifies this contribution to the sensitivity of the functional to 
the control variables. This is a continuous analogue to the 
product rule.) 

In most practical applications the main problem is so com- 
plex that it has to be tackled numerically: First, a discretiza- 
tion scheme for the main equations is chosen, and then a 
numerical model for integration of the discrete equations is 
coded. Since, in general, the adjoint problem is as complex 
as the main problem, it is solved numerically as well. The re- 
sulting implementation is called adjoint model. The solution 
of the adjoint problem is then used to evaluate the discretized 
expression of the sensitivity. 

2. Besides the cumbersome analysis that for a particu- 
lar problem is necessary to rigorously define T and T* and 
to derive an expression for the sensitivity, approach 1 has a 
distinct disadvantage: There is no unique choice of a dis- 
cretization scheme for the adjoint problem, and a priori it is 
not clear which choice will result in a discrete version that 

is adjoint to the discretization of the main problem. In par- 
ticular, the appropriate discretization scheme for the adjoint 
problem can be different from that for the main problem, 
i.e., as operators, building the adjoint and discretization do 
not interchange [Griewank, 1989]. Owing to inappropriate 
discretization, thus the sensitivity computed by the adjoint 
model differs from the sensitivity of the numerical model of 
the main problem. As is examined by, e.g., Shah [1991] and 
remarked by Talagrand and Courtier [1987], therefore it is 
favorable to develop the adjoint model from the discretiza- 
tion of the main problem: The adjoint operator is derived 
for the discretized form of T, operating in a finite dimen- 
sional space. Implicitly, this adjoint operator also defines 
the discretization scheme for the adjoint problem. As in the 
approach 1, eventually an adjoint model solving the discrete 
adjoint problem has to be implemented, and the solution is 
used to evaluate the discretized expression of the sensitivity. 
This approach has been applied to weather forecast mod- 
els, e.g., by Talagrand and Courtier [1987], Courtier and 
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Talagrand [1987] or to ocean circulation models, e.g., by 
Thacker and Long [1988]. 

3. A more direct approach for adjoint code generation 
uses the code of the main model as starting point: The com- 
position of the main model with some functionals character- 
izing the quantifies of interest is considered as an algorithm 
mapping a finite representation of the control variables onto 
the values of the funcfionals. As described below, by apply- 
ing systematically the chain rule of differentiation to every 
single step in the model code in reverse mode, a model for 
the sensitivity is constructed. In the terminology introduced 
above, this model is the composition of the adjoint model 
with the implementation of the funcfional's first derivative. 
Using the model code as starting point for adjoint code con- 
strucfion, however, this distinction is no longer important, 
so that we slightly change our terminology and refer to this 
composition as adjoint model in the following. In section 3.2 
we demonstrate that essentially, the adjoint model performs 
subsequent multiplications in reverse order of the adjoints 
of the Jacobians corresponding to the single steps in the 
model code. The main advantage of this approach is that, 
on the level of the single steps in the model code, the ad- 
joints can be constructed according to simple rules [Gier- 
ing and Kaminski, 1998]. Thus this task can be handled 
automatically [Juedes, 1991 ] (R. Giering, 1997, available 
at http://puddle.mit.edu/,.•ralf/tamc) without any knowledge 
of the nature of the main problem and the system that is 
integrated by the model. For applications to geosciences, 
see, e.g., Talagrand [ 1991 ] and Thacker [ 1991 ]. The con- 
cept of applying systematically the chain rule to differenti- 
ate a numerical code is known as "differentiation of algo- 
rithms," "computational differentiation," or "automatic dif- 
ferentiation" [Griewank, 1989], and adjoint code construc- 
tion is merely one of its applications. For an overview, see, 
e.g., Iri [ 1991 ] or Corliss and Rall[ 1996]. 

3.2. Differentiation of Algorithms 

In the following we describe how a function that is com- 
posed of elementary functions can be differentiated by use 
of the chain rule. When talking about elementary functions 
the reader should have in mind the single statements of the 
TM2 code, although the same mathematical formalism can 
be applied, if the elementary functions are considered to be 
related, e.g., to basic physical processes such as advection or 
diffusion. For automatic generation of derivative computing 
code, however, it is crucial that the Jacobians of the single 
steps can be constructed according to simple rules. Let 

be a function that is composed 

K 

/=1 

of K differentiable elementary functions: 

(10) 

t' (t - K) 
g t-• • g t . 

Even if • is not given symbolically, i.e., by a formula, but 
by a numerical algorithm such as TM2, the Jacobian matrix 
representing the first derivative of • 

o•(x) o•(x) 

O(X) ._ '.. ox. ß . 

OX '- ß 
o•..(x) o•.,(x) 

OX• ' ' ' OX. 

can be computed using the chain rule of differentiation from 
the Jacobians of the elementary functions 

o(x) 
OX X=Xo 

OZIC-• z•"-•=zff -• '"" OZ o zO=xo ' (11) 
We have used 

Zo .- t o...o (I_</_<K) 

to denote the intermediate results, through which the deriva- 
tives of the elementary functions depend on X0. 

For evaluating the multiple matrix product in (11) there 
are many possibilities. Depending on the size of the ele- 
mentary matrices they differ in the number of operations that 
have to be performed and in the size of the matrices contain- 
ing the intermediate derivatives. For an algorithm tackling 
the evaluation of this multiple matrix product, the most ob- 
vious strategies are the forward and the reverse mode, where 
forward and reverse refer to the order of operations imposed 
by the composition: Operating in forward mode, the product 
is evaluated from the fight to the left, which means that the 
product is computed in the same order as for evaluation of 7• 
in (10). Alternatively, the product can be evaluated from the 
left to the fight, which is denoted as reverse mode, because 
the order is opposite to the order for evaluation of 7• in (10). 
In this evaluation procedure, the intermediate matrices at the 
lth step contain 

o... o Ix_-xo ox 

in forward mode and 

o... o tt+ z,=zo, 

in reverse mode. Thus forward and reverse refer to the direc- 
tions in which the intermediate derivatives are propagated by 
the respective algorithm for evaluation of (11). According to 
(11), the forward mode step corresponding to the lth step of 
the composition (1 O) is 

= OX =Xo 

o... o t)(X)lx=xo ß ß 

OZ t-• z'-•=Z'o-• OX (12) 
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With respect to the standard inner product the adjoint ma- 
tfix of 

O•(X) 
OX 

is simply the transposed matrix. Thus (11) can be written in 
the form 

ou(x) * 
OX X=Xo 

07-l•[ * 07.l•:[ * OZ o zO=xo '...'OZK_ • ZK_,=Zg'-, . (13) 
This means, the reverse mode step corresponding to the I th 
step of the composition (10) is performed by multiplying the 
intermediate matrix 

o(,t o... o ,t [ z,=z,o 

by the adjoint of 

07-t t 
OZt-• zl--l=ZlO-1 • 

which yields 

o(,t o...o ,tt)(z 
OZt-X zl--l =ZlO --1 

07-t t 
OZt-• ZI-- I -. ZtO --1 * O(t o... o [ ß z,=z,o 

(14) 

Forward mode 

. Ex x x x x 3 

Reverse mode 

. Ex x x x x 3 

Figure 1. Example of forward and reverse modes illustrating 
the differences in the storage requirements and in the number 
of operations: The same matrix product, whose result has 
one row and five columns, is evaluated in forward mode, 
i.e., from fight to left (top), and in reverse mode, i.e., from 
left to fight (bottom). In forward mode the matrices holding 
the intermediate results have five columns, while in reverse 
mode they have one row. 

Therefore the reverse mode is also called adjoint mode. 
As illustrated by Figure 1 for a scalar valued function 

(m = 1) of n = 5 variables, in the forward mode all ma- 
trices containing intermediate derivatives have n columns, 
whereas in the reverse mode they have rn rows. Therefore, in 
forward mode the number of operations as well as the stor- 
age requirements are proportional to n, whereas in reverse 
mode both is proportional to m. 

In general, the intermediate results Z0 t of the preceding 
step are required for the evaluation of the derivatives of the 
elementary functions (see (11)). While in the forward mode 
the intermediate results are required in the same order as 
computed, in the reverse mode they are required in reverse 
order. Thus providing of the intermediate results is more 
complicated in reverse mode and in general causes extra op- 
erations or extra storage requirements [Giering and Kamin- 
ski, 1998], which has to be taken into account when compar- 
ing the efficiency of reverse and forward mode for a particu- 
lar function • (see section 3.3). 

The Tangent linear and Adjoint Model Compiler (R. Gier- 
ing, 1997, available at http://puddle'mit'edu/"øralf/tamc) is a 
tool that automatically generates code for evaluation of first 
derivatives. The TAMC is a source to source translator that 

accepts essentially FORTRAN 77 code for the evaluation of 
a function and generates code for evaluation of its Jacobian. 
As requested by the user, the generated code operates ei- 

ther in forward or reverse mode. The schemes for forward 

or reverse mode are practically implementations of the gen- 
eral rules (12) and (14), respectively. Of course, this imple- 
mentation is not unique: The scheme chosen for the TAMC 
is based on a few principles [Giering and Karninski, 1998], 
which essentially have been suggested by Talagrand [1991 ]. 
Rigorous application of these principles yields rules for dif- 
ferentiating the single statements a code is composed of. 
These simple rules can be applied automatically by source 
to source translators like TAMC or Odysste [Rostaing et al., 
1993]. 

3.3. Generation of the Adjoint Model 

By the TAMC the model adjoint to TM2 in the standard 
setup has been generated automatically. To ensure an accu- 
rate interpretation by the TAMC the structure of the model 
code had to be slightly rearranged. 

As is obvious from (14), the intermediate results Z0 t (re- 
quired variables) have to be provided for the adjoint run. 
Unlike many other adjoint applications in meteorology and 
oceanography, in transport models many of the required vari- 
ables quantify the dynamic state of the atmosphere. These 
required variables do not depend on the control variables, 
i.e., the sources and sinks. In the terminology of adjoint 
code construction they are called passive variables. Hence, 
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Table 1. Comparison of Efficiency in the Computation of the Jacobian Between Adjoint Model and 
Differential Quotients for a Cray C90 

Run CPU Time, Memory, 
s lgd Relative MW Relative 

1 forward 1 tracer 186 1 0.933 1 
2 forward 2 tracers 320 1.72 0.974 1.04 

10368 tracers (from 1 and 2) 1389364 16 d 7460 429.090 460 
10368 x 1 tracer 1928448 22 d 10368 0.933 1 

3 adjoint, nc = 1 660 3.5 1.092 1.2 
4 adjoint, nc =24 (2 stations) 3045 16.4 3.999 4.3 
5 adjoint, n• = 108 (9 stations) 5560 30 15.797 16.9 
6 adjoint, n• =216 (18 stations) 10260 55 30.962 33.2 

sum of 5 and 6 15820 4.4 h 85 

7 5 times 6 (90 stations) 51300 14.3 h 275 30.962 33.2 

Columns: number and description of run, CPU time in seconds and multiples of the CPU time for a simple forward 
run, memory requirements in MW and in multiples of the memory required by a simple forward run. The numbers for 
10368 tracers are computed from scaling up the differences between the 1 and 2 tracer runs (the forward model does 
not vectorize over the tracer dimension). The given numbers for a 90 station Jacobian correspond to a computation 
by five runs with 18 stations per run. 

in principle, they could be computed and stored once and 
then be read during each adjoint run. Since this would re- 
quire disk space of about 1.3 gigawords (GW), (at least on a 
Cray C90) it is more efficient to recompute the required val- 
ues during every adjoint run. In order to reduce these storage 
requirements during the adjoint run it is favorable to include 
a so-called checkpointing scheme [Griewank, 1992] in the 
adjoint model: In a first integration of TM2 the state of the 
model is saved at checkpoints in weekly intervals on disk. 
During the adjoint run the checkpoints are used as starting 
points for recomputation and storing of required values for 
the whole week in a second file. Finally, for the adjoint com- 
putations these stored values are read. The storage require- 
ments are reduced considerably at the cost of an additional 
model integration. This checkpointing scheme also is imple- 
mented automatically by the TAMC. 

In Table 1 the adjoint model's CPU and memory require- 
ments are compared to computation of the Jacobian by dif- 
ferential quotients. The numbers refer to a Cray C90 su- 
percomputer. For the standard setup with nc = 1, the ad- 
joint model needs the CPU time of about 3.5 TM2 runs and 
about the same amount of memory as TM2. The Jacobian 
for 27 stations, including the stations in Figure 2, has been 
computed in two separate runs in order not to allocate more 
memory than 32 megawords (MW). In total, the CPU time 
of about 85 TM2 runs has been used. While the memory re- 
quirements are proportional to the number of output values 
nc, the CPU time per value decreases with increasing n• for 
two reasons: First, for our function T, the cost of providing 
the required variables is independent of n•. Thus, for higher 
n•, there is no additional cost. Second, by the TAMC the 
adjoint code is arranged to achieve a vector lengths of n•; 
for vectorized loops of the transport model, advanced com- 
pilers are even capable to enlarge vector dimensions by a 
factor of no. On a vector machine like the C90, this yields a 
considerable speedup, because the computations for the in- 
dividual vector components are independent of each other. 

For the same reason, a similar speedup could be achieved 
on a parallel machine. In contrast, from the difference of 
runs with one and two tracers, one can estimate a CPU time 

of 7460 TM2 runs for the computation of the full Jacobian 
by an rtf tracer run. By rearranging the TM2 code, so that 
the tracer dimension n f is used for vectorizafion instead of 
the dimension of the zonal grid (36), a speedup could be 
achieved, too. Yet this speedup is limited by the maximum 
vector length, which is 128 on the C90. In addition, this 
multitracer run would need more memory than is available 
on most machines (429 MW), so that it had to be split up to 
a couple of runs with less tracers. For a linear function like 
T, the Jacobian that is computed by differential quotients is 
free from truncation error. In that respect, the forward mode 
is not superior to differential quotients. Nor is the forward 
mode superior in terms of computational efficiency, because 
it includes an additional function evaluation, so that for small 

nf the forward mode would be slightly slower, and for large 
n f the efficiency would be comparable to differential quo- 
tients. Hence there is no need to include explicit numbers 
for the forward mode in this comparison. The last row in 
Table 1 explores the feasibility of the computation of a Ja- 
cobian for an observational network of 90 stations, which is 

about the extend of the Globalview CO2 monitoring network 
[Globalview-C02, 1996]. By scaling up the CPU time for 
an 18 station run (row 6) row 7 quantifies the requirements 
for computation of the Jacobian in reverse mode in 5 sepa- 
rate runs. Even for this extended network the cost of about 

275 forward runs or 14.3 hours is small compared to the cost 
of about 20 days for the forward approach. 

4. The Matrix Representation 

In section 2 we have defined a standard setup of our trans- 
port model to simulate the quasi-stationary seasonal cycle 
at particular observational sites. Section 3 then has intro- 
duced the adjoint of the transport model and has discussed 
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Figure 2. Twenty-five NOAA/CMDL monitoring stations whose observational data we use in our inver- 
sion example. 

the computational benefit of applying the adjoint to derive a 
representation of the model by its Jacobian matrix T, which 
in the work of Kaminski et al. [this issue] is Used for an inver- 
sion of the atmospheric transport of COo.. Besides its use for 
inversions, the Jacobian by itself is an interesting object to 
study, because it quantifies how the transport relates a given 
flux field to the quasi-stationary seasonal cycle at the obser- 

vational sites. In this section, we first visualize and discuss 

parts of the full Jacobian and then give examples of collaps- 
ing the matrix to compress or summarize its information. 
Also we demonstrate how the matrix is applied to analyze 
transport model runs by decomposing the simulated values 
with respect to the contributions of the fluxes into all grid 
cells in all months. 

Table 2. Twenty-Five NOAA/CMDL Monitoring Stations Whose Observational Data We Use in Our 
Inversion Example 

Identifier Description Country Latitude Longitude Elevation 

ALT Alert, N.W.T. Canada 82 27'N 62 31 'W 210 
MBC Mould Bay, N.W.T. Canada 76 14'N 119 20'W 15 
BRW Point Barrow, Alaska United States 71 19'N 156 36'W 11 
STM Ocean Station "M" Norway 66 00'N 2 00'E 6 
CBA Cold Bay, Alaska United States 55 12'N 162 43'W 25 
SHM Shemya Island United States 52 43'N 174 06'E 40 
CMO Cape Meares, Oregon United States 45 29'N 124 00'W 30 
AZR Azores (Terceira Island) Portugal 38 45'N 27 05'W 30 
NWR Niwot Ridge, Colorado United States 40 03'N 105 38'W 3749 
MID Sand Island, Midway United States 28 13'N 177 22'W 4 
KEY Key Biscayne, Florida United States 24 40'N 80 12'W 3 
MLO Mauna Loa, Hawaii United States 19 32'N 155 35'W 3397 
KUM Cape Kumukahi, Hawaii United States 19 31 'N 154 49'W 3 
GMI Guam U.S. Territory 13 26'N 144 47'E 2 
AVI St. Croix, Virgin Islands United States 17 45'N 64 45 W 3 
RPB Ragged Point Barbados 13 10'N 59 26'W 3 
CHR Christmas Island Kiribati 2 00'N 157 19'W 3 
SEY Seychelles (Mahe Island) Seychelles 4 40'S 55 10'E 3 
ASC Ascension Island United Kingdom 7 55'S 14 25'W 54 
SMO American Samoa U.S. Territory 14 15'S 170 34'W 30 
AMS Amsterdam Island France 37 57'S 77 32'E 150 

CGO Cape Grim, Tasmania Australia 40 41 'S 144 41 'E 94 
PSA Palmer Station (Anvers Island) Antarctica 64 55'S 64 00'W 10 
HBA Halley Bay Antarctica 75 40'S 25 30'W 10 
SPO Amundsen Scott (South Pole) Antarctica 89 59'S 24 48'W 2810 
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Figure 3. The second half of the Jacobian's row corresponding to the November mean concentration at 
the station on Ascension Island (ASC: 7ø55'S, 14ø25'W, 54 m). For our cyclostationary model setup, 
each global map shows the concentration's sensitivity to a periodical yearly emission, which is uniformly 
distributed over a particular month. Reference is instantaneous global mixing, i.e., negative numbers 
quantify sensitivities that are reduced owing to transport. The cross indicates the station location. 

4.1. Visualization of Atmospheric Transport: Potential 
Impact 

In the following we discuss the Jacobian matrix T derived 
for r•8 = 25 locations of stations from the NOAA/CMDL 
global observational network (see Figure 2 and Table 2), 
whose data we use for our inversion example of Kaminski 
et al. [this issue]. A row of T consists of the sensitivity of 
the modeled concentration at a particular station and month 
to the fluxes into each of the r•a = 36 x 24 TM2 surface 
layer grid cells at each month. The columns of T quantify 
the impact of a particular flux component on the modeled 
concentration at each station and month. The sensitivity or 
the impact are defined as the change in the concentration 
resulting from a change in the flux, which formally is repre- 
sented by the derivative of the concentration with respect to 
the flux and has the unit of a concentration divided by a flux. 

For comparison of the respective enlries, direct visualiza- 
tion of the Jacobian is not very instructive: According to the 
definition of our standard setup, the single entries quantify 
the concentration change that results from switching on a 
uniform flux for a particular month in a particular grid cell in 
every year of the four year simulation period. Hence, in ad- 
dition to the properties of the atmospheric transport model, 

_. 

the matrix also reflects features determined by our setup, 
such as (1) the lengths of the spin up period, (2) whether the 
month the concentration refers to is earlier in the year than 
the month the flux refers to, and (3) the lengths of the month 
the flux refers to. Feature (3) can be easily removed from the 
Jacobian by changing units from concentration per flux to 
concentration per yearly emission rate, i.e., ppmv GtC- z a. 
To get rid of features (1) and (2), rather than the Jacobian it- 
self, we plot its difference from an appropriate reference ma- 
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Figure 4. The first half of the Jacobian's row corresponding to the May mean concentration at the station 
on the mountain Mauna Loa, Hawaii (MLO: 19ø32'N, 155ø35'W, 3397 m). For our cyclostationary 
model setup, each global map shows the concentration's sensitivity to a periodical yearly emission, which 
is uniformly distributed over a particular month. Reference is instantaneous global mixing, i.e., negative 
numbers quantify sensitivities that are reduced owing to transport. The cross indicates the station location. 

trix. In (7), we already made use of such a reference matfix, 
namely the matrix whose entries quantify the changes in the 
global linear trend contributions to the respective concentra- 
tion components that result from changes of the respective 
flux components. With this reference matrix, we get rid of 
feature (1) but not of feature (2), because the entries in the 
matrix are the same regardless of the month the flux belongs 
to. Yet this choice of a reference matrix is appropriate to 
visualize a column of the Jacobian, because within one col- 
umn of T all entries refer to the same flux component, and 
its impact on all the concentration components can be com- 
pared. With respect to this reference matrix, plots of the 
columns, according to (7), show the impact of a particular 
flux component on the periodic contributions to each of the 
concentration components. 

For visualization of the Jacobian's rows as in Figures 3 - 
5 discussed below, in contrast, we choose a reference matrix 
that removes features (1) and (2), namely the Jacobian that 
our standard setup would yield, if global mixing was instan- 
taneous. In other words, the reference matrix is derived from 

a one box model that behaves like TM2 with infinitely fast 
diffusion, i.e., it also uses a = 0.476 ppmv GtC -• to con- 
vert mass into concentrations. Since a row corresponds to 
the concentration at a particular station and month, it yields 
12 global maps, each of which is quantifying this concen- 
tration's sensitivity to the mean surface exchange fluxes in 
a particular month at any location on the globe. A posi- 
tive value on the map for any month quantifies a sensitiv- 
ity to an emission at the corresponding grid cell and the re- 
spective months that is enhanced compared to instantaneous 
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Figure 5. The first half of the Jacobian's row corresponding to the June mean concentration at the Point 
Barrow station in Alaska (BRW: 66ø00'N, 2ø00'E, 6 m). For our cyclostationary model setup, each global 
map shows the concentration's sensitivity to a periodical yearly emission, which is uniformly distributed 
over a particular month. Reference is instantaneous global mixing, i.e., negative numbers quantify sensi- 
tivities that are reduced owing to transport. The cross indicates the station location. 

global mixing: a value of :c ppmv GtC -• y-• means that 
a yearly emission of 1 GtC, which is uniformly distributed 
over the respective grid cell and month, in a TM2 run yields 
a monthly mean concentration at the station and month that 
is enhanced by :c ppmv. Note that for stations in the lower 
model layers, the average of these sensitivities with respect 
to all flux components, in general, will be higher than zero. 
This is simply because we deal with surface fluxes, while 
our reference is derived for a homogeneous distribution in 
the entire atmosphere. In contrast, for observations in the 
stratosphere this average would be lower than zero. 

As an example, in Figure 3 the second half of the ma- 
trix row corresponding to the November mean concentration 
at the station on Ascension Island (ASC: 7ø55'S, 14ø25'W, 
54 m) is displayed. November emissions in the ocean re- 

gion ranging from the south of Africa (30 ø south) to the 
equator at the longitude of ASC would have the highest im- 
pact (more than 10 ppmv GtC- •). Going one month back 
to October emissions, the area of highest impact is shifting 
to the east, now coveting the southern half of Africa. Still 
the impact of this region is at least as high as for Novem- 
ber emissions. Ifiterestingly, at the latitude of ASC in the 
Pacific Ocean and part of the Indian Ocean, the impact of 
emissions in November or even in October is smaller than 

for instantaneous global mixing. This demonstrates the dis- 
advantages of using the mean concentration at a monitoring 
station in a two-dimensional inversion to constrain the fluxes 

at a latitude band around the respective station on a monthly 
timescale. In the maps quantifying the impact of emissions 
earlier in the year (not shown), the predominant structure 
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Figure 6. Collapsed Jacobian's rows corresponding to the 12 monthly mean concentrations at the stations 
(a) on Ascension Island (ASC: 7ø55'S, 14ø25'W, 54 m), (b) on the mountain Mauna Loa, Hawaii (MLO: 
19ø32'N, 155ø35'W, 3397 m) and (c) at Point Barrow in Alaska (BRW: 66ø00'N, 2ø00'E, 6 m). The 
annual mean concentration's sensitivity to a periodical yearly emission, which is constant in time, in our 
cyclostationary model setup. Reference is instantaneous global mixing, i.e., negative numbers quantify 
sensitivities that are reduced owing to transport. The cross indicates the station location. 

is a division between both hemispheres. Compared to in- 
stantaneous global mixing the impact of the northern hemi- 
sphere is about 0.5 ppmv GtC- • smaller, whereas the impact 
of the southern hemisphere is larger by the same amount. 
This feature is clearly caused by the relatively slow inter- 
hemispheric mixing across the Hadley cell. Quantitatively, 
the fact that the impact of October emissions north of 30 ø 
is more than 0.5 ppmv GtC -• smaller as compared to in- 
stantaneous global mixing shows that not even the emissions 
of the previous year have been transported to ASC at an 

amount comparable to instantaneous global mixing (0.476 
ppmv GtC- •). This reflects the fact that in TM2 the trans- 
port needs more than one year to achieve a globally well 
mixed atmosphere (see section 2). 

For comparison, maps for two stations and months are dis- 
played, where the shape of the areas with high potential im- 
pact compared to instantaneous global mixing is more zonal 
than for ASC. Figure 4 shows the potential impact of emis- 
sions in the first half of the year to the May mean concen- 
tration at the station on the mountain Mauna Loa, Hawaii 
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Figure 6. (continued) 

(MLO: 19ø32'N, 155ø35'W, 3397 m). The potential impact 
is highest for May emissions around of the station. The ab- 
solute peak values are lower than those for ASC (less than 10 
ppmv GtC-•) because the emission is diluted before reach- 
ing the mountain location. As another example, in Figure 5 
we display the impact of emissions in the first half of the 
year on the June mean concentration at the Point Barrow 
station in Alaska (BRW: 66ø00'N, 2ø00'E, 6 m). Here the 
area of highest impact is well focussed near the station with 
high peak values of up to 70 ppmv GtC-•. The information 
on potential impact can be compressed on the flux side, or 
on the concentration side, or both: Prescribing the shape of 
the seasonal cycle of the emissions into every surface grid 
cell, each matrix row can be projected to a single map of the 
potential impact of a yearly flux on the respective monthly 
mean concentration. On the concentration side, for all fea- 
tures that can be derived from the monthly mean concentra- 
tions at the stations, the sensitivities with respect to monthly 
or yearly emissions (in combination with prescribed tempo- 
ral shape) can be easily computed from the matrix. As an 
example, in Figure 6 we show the sensitivity of the annual 
mean concentration at ASC, MLO, and BRW, respectively, 
to fluxes that are constant in time over the whole year. Com- 
pared to the monthly maps the peak of the potential impact 
is lower, slightly more widespread but still in the same re- 
gions. This indicates that for uniform emissions throughout 
the year, at these stations the modeled concentration is not 
very sensitive to the seasonality of the transport. 

Another way of looking at the maps is in terms of the size 
of surface areas that are "observed" by the respective sta- 
tions: On the monthly timescale all three stations are most 
influenced by an area of only a few grid cells. On the annual 
timescale there are differences among the stations: While 
ASC still observes only a small area, BRW is representative 
for the northern high latitudes, and MLO is strongly influ- 

enced by the entire northern hemisphere. When investigat- 
ing a particular scientific question these transport character- 
istics, of course, are merely a fraction of the features that de- 
termine the importance of a monitoring location. Other fea- 
tures are the specific source/sink characteristics of the tracer 
of interest. 

4.2. Combining Atmospheric Transport and Flux 
Fields: Simulated Impact 

We discussed the potential impact quantified by the Jaco- 
bian. If a particular flux field f is prescribed, according to 
(8) by a matrix multiplication with the Jacobian this potential 
impact can be used to simulate the resulting quasi-stationary 
seasonal cycle at the station locations. Hence the Jacobian 
is an extremely efficient transport model by itself. Once the 
Jacobian has been computed, for the simulation of the quasi- 
stationary seasonal cycle at the stations, there is no need to 
run TM2 again, as long as the setup (including the location 
of the stations) is still appropriate for the tracer of interest. 

For an example, we employed the a posteriori CO2 fluxes 
inferred in an inversion of the atmospheric transport [Kamin- 
ski et al., this issue]. These fluxes are the sum of the fos- 

sil fuel component and the biospheric and oceanic compo- 
nents depicted in Figure (9) of Kaminski et al. [this issue]. 

Figure 7 shows the simulated periodic component of the 
quasi-stationary seasonal cycle at Mauna Loa, which has 
been computed according to (8). 

Using the matrix does not only reduce the computational 
cost of a simulation to the cost of a simple matrix multipli- 
cation but also the amount of required disk space. While 
the meteorological fields to drive TM2 for one year occupy 
about 30 MW, the matrix just needs 36 x 24 x 12 x 27 x 12 W 
m 3 MW. Thus, among other applications, as transport 
model the Jacobian represents a valuable tool for sensitivity 
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Figure 7. Simulated quasi-stationary seasonal cycle at Mauna Loa based on the flux field inferred in the 
inversion of Kaminski et al. [this issue]. 

tests: Knorr [1997] investigated the response of the atmo- 
spheric CO2 concentration at the NOAA/CMDL stations to 
exchange flux fields computed by a large number of different 
formulations of his terrestrial biosphere model. 

In addition to quantifying potential impact and to perform 
transport simulations, by means of the Jacobian it is easy to 
analyze the simulation in terms of the simulated impact of 
all components of a prescribed flux vector: Writing (8) in 
the form (and dropping the index qsc for convenience) 

n! 

ci -- E Mi,jfj , (15) 
j'-i 

each concentration component ci is decomposed into the 
contributions ci,j := Mi,j fj by the respective flux compo- 
nent fj. The quantity cij/ci is then the portion of ci result- 
ing from the flux component j in the simulation and like the 
potential impact can be conveniently displayed on 12 maps 
per concentration component. 

As an example, we analyzed the simulation of the quasi- 
stationary seasonal cycle at Mauna Loa, which was based 
on the flux field described above. Figure 8 shows the de- 
composition of the May mean in the periodic component of 
the quasi-stationary seasonal cycle, which is depicted in Fig- 
ure 7. Recall that according to the definition of this periodic 
component in (15), e.g., for an emission, the impact on the 
trend (reference term) is subtracted from the impact quanti- 
fied by the product of the emission with the respective col- 
umn of the Jacobian (Jacobian term). Discussion of the maps 
is complicated by the different signs of both terms, i.e., their 
relative magnitude is important. On the northem hemisphere 
where the station is located, in general, the reference term 
is smaller than the transport term, so that the interpretation 
is rather straight forward: In months where fluxes into the 
atmosphere are positive, grid cells tend to have a positive 
contribution to the May concentration at Mauna Loa (i.e., 

the.May component in the quasi-stationary seasonal cycleat 
Mauna Loa). In winter, this is the case for most of the terres- 
trial grid cells, i.e., most of Asia, Europe and North Amer- 
ica. In contrast, whenever there are large fluxes from the 
atmosphere into the ocean or the biosphere, the respective 
grid cells have a negative contribution, i.e., those fluxes re- 
duce the May concentration at Mauna Loa. This is the case 
for the North Atlantic sink. Of course, according to (15), 
this is weighted by the effect of the transport: For exam- 
ple, although the absolute value of the May fluxes into the 
North Atlantic is smaller than that of the terrestrial uptake in 
June at the temperate latitudes over Asia, the contribution of 
the North Atlantic sink in May to the May concentration at 
Mauna Loa is much larger. These different weighting fac- 
tors are reflected in Figure 4. In contrast, for fluxes on the 
southern (and remote) hemisphere, the reference term in (15) 
tends to dominate the J acobian term, which is small due to 
slow interhemispheric exchange. For this reason sources in 
South America and the southern part of Africa have a neg- 
ative impact on the May concentration at Mauna Loa: Such 
a source flattens the north-south gradient, and the reduction 
of the annual mean part of the periodic component at Mauna 
Loa (due to subtraction of the trend) overcompensates the 
increase due to the Jacobian term. On the other hand, for 
example in December, the fluxes from the atmosphere into 
the Southern Ocean have a positive contribution to the May 
concentration at Mauna Loa: The north south gradient is in- 
creased, so that the annual mean in the periodic component 
at MLO increases, too. And this increase overcompensates 
the decrease of the May mean concentration due to the Jaco- 
bian term. 

Again, as for the potential impact, the information can be 
compressed on the flux side, the concentration side, or both 
sides. For example, in the work of Kaminski et al. [1996] we 
analyzed a TM2 run using the fluxes derived by a biosphere 
model [SDBM, Knorr and Heimann, 1995]: On the flux side 
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Figure 8. Decomposition of the May component in the quasi-stationary seasonal cycle at Mauna Loa 
based on the flux field inferred in the inversion of Karninski et al. [this issue]. The respective maps quantify 
the contributions from the fluxes at all months and grid cells in per cent. (a) fluxes from January to June; 
(b) fluxes from July to December. Negative values mean that the fluxes in the respective months and grid 
cells have a negative contribution, i.e., increasing those fluxes would yield a reduced May component in 
the quasi-stationary seasonal cycle at Mauna Loa. 

we prescribed the shape of the SDBM fluxes, and on the con- 
centration side we projected on the simulated seasonal cycle. 
We thus decomposed the magnitude of the modeled seasonal 
cycle at particular observational sites with respect to the con- 
tributions by the respective grid cells, which yields one map 
per station. For this study we had to run the adjoint model 
once per station. By means of the Jacobian this kind of de- 
composition is easily performed without the adjoint model. 

5. Concluding Remarks 

We demonstrated the benefit of the adjoint approach for 
the computation of the Jacobian matrix representing a three 
dimensional atmospheric transport model. This matrix maps 
flux fields on the model's approximately 8 ø by 10 ø horizon- 
tal grid onto the simulated concentrations at 27 observational 
sites. For this setup the computational efficiency of the ad- 
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joint was about 100 times higher as compared to conven- 
tional forward modeling. 

The adjoint model has been automatically generated from 
the transport model code by the TAMC. To ensure an ac- 
curate interpretation, prior to invoking the TAMC, the code 
had to be prepared and rearranged slightly. In particular con- 
stmcts that complicate the order of execution of the state- 
ments had to be replaced. Unlike the conventional use of ad- 
joint models, where the adjoint model evaluates the deriva- 
tive of a scalar valued cost function, which is then iteratively 
minimized by an optimization algorithm, the Jacobian com- 
puted here is the derivative of a linear vector valued function. 

As a linear function mapping fluxes on concentrations 
at observational sites, the Jacobian contains all information 

about the transport. Hence, once the Jacobian is available 
for a particular setup, it can replace the transport model: To 
simulate the concentrations at the station locations, instead 

of running the model for a given flux field, this flux field can 
be multiplied by the Jacobian, which is much more efficient 
in terms of both memory and CPU requirements. 

Plots of the rows of the Jacobian provide information 
about the potential impact of emissions at every location on 
the globe and in every month on the modeled concentration 
at a particular station and month. On the other hand, com- 
bining the Jacobian to a prescribed flux field, a simulated 
concentration value at a particular station and month can be 
analyzed: This value can be decomposed into the contribu- 
tions of the fluxes in the respective grid cells and months. 
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Such maps of potential or simulated impact could provide 
valuable information about differences in the transport sim- 
ulated by different models. In that respect the reverse ap- 
proach could complement the maps of concentration fields 
simulated by running prescribed flux fields forward through 
different models. The reverse approach requires that adjoints 
of the respective transport models be available. Since trans- 
port models typically are implemented in Fortran, we sug- 
gest the use of automatic differentiation tools such as the 
TAMC. 

The J acobian contains all necessary transport informa- 
tion to infer the magnitude of cyclostationary CO2 surface 
exchange fluxes together with their uncertainties from ob- 
served concentrations at the station locations and prior esti- 
mates of the fluxes. In a companion paper [Kaminski et al., 
this issue], we present such an inversion study using atmo- 
spheric CO2 observations of the period from January 1981 
to January 1987 from the NOAA/CMDL program [Conway 
et al., 1994; Globalview-C02, 1996]. Our inversion con- 
trasts the conventional use of adjoint models for optimiza- 
tion, where a (potentially expensive) computation of second 
derivatives is necessary to obtain estimates of the uncertain- 
ties in the unknown variables. 

Acknowledgments. The authors thank two anonymous review- 
ers for helpful suggestions and comments as well as Michael Vol3- 
beck for producing all GRADS plots. This work was supported in 
part by the Commission of the European Communities under con- 
tract EV5V-CT92-0120. Computing support was provided by the 
Deutsches Klimarechenzentrum (DKRZ) in Hamburg. 

References 

Bousquet, P., Optimisation des flux nets de CO2: assimilation des 
mesures atmosph6riques en CO2 et en 6•3C dans un modele de 
transport tridimensionnel, Ph.D. thesis, Univ. Paris VI, 1997. 

Brown, M., Deduction of emissions of source gases using an objec- 
tive inversion algorithm and a chemical tranport model, J. Geo- 
phys. Res., 98, 12,639-12,660, 1993. 

Brown, M., The singular value decomposition method applied to 
the deduction of the emissions and the isotopic composition of 
atmospheric methane, J. Geophys. Res., 100, 11,425-11,446, 
1995. 

Ciais, P., et al., Partitioning of ocean and land uptake of CO• as 
inferred by 6•3C measurements from the NOAA climate moni- 
toring and diagnostics laboratory global air sampling network, J. 
Geophys. Res., 100, 5051-5070, 1995. 

Conway, T. J., P. Tans, L. Waterman, K. Thoning, D. Buanerkitzis, 
K. Masarie, and N. Zhang, Evidence for interannual variability 
of the carbon cycle from the noaa-cmdl global air sampling net- 
work, J. Geophys. Res., 99, 831-855, 1994. 

Corliss, G., and L. B. Rail, An introduction to automatic differen- 
tiation, in Computational Differentiation: Techniques, Applica- 
tions, and Tools, edited by M. Berz, C. Bischof, G. Corliss, and 
A. Griewank, pp. 1-18, SIAM, Philadelphia, Pa., 1996. 

Courtier, P., and O. Talagrand, Variational assimilation of meteo- 
rological observations with the adjoint equation, II, Numerical 
results, Q. J. R. Meteorol. Soc., 113, 1329-1347, 1987. 

Denning, A. S., I. Y. Fung, and D. Randall, Latitudinal gradient of 
CO2 due to seasonal exchange with biota, Nature, 376, 240-243, 
1995. 

Enting, I. G., Green's function methods of tracer inversion, 
in Geophysical Monograph Series, edited by P. Kasibhatla, 
M. Heimann, D. Hartley, P. J. Rayher, N. Mahowald, and 
R. Prinn, AGU, Washington, D.C., in press, 1999. 

Enting, I. G., and J. V. Mansbridge, Seasonal sources and sinks of 
atmospheric CO,•: Direct inversion of filtered data, Tellus, Ser. 
B, 41, 111-126, 1989. 

Enting, I. G., C. M. Trudinger, and R. J. Francey, A synthesis inver- 
sion of the concentration and 6•3C of atmospheric CO,•, Tellus, 
Ser. B, 47, 35-52, 1995. 

Giering, R., and T. Kaminski, Recipes for Adjoint Code Construc- 
tion, ACM Trans. Math. Software, 24, 437-474, 1998. 

Globalview-CO2, Cooperative Atmospheric Data Integration 
Project - Carbon Dioxide [CD-ROM], NOAA/CMDL, Boulder, 
Colo., 1996. 

Griewank, A., On automatic differentiation, in Mathematical Pro- 
gramming: Recent Developments and Applications, edited by 
M. Iri and K. Tanabe, pp. 83-108, Kluwer Acad., Boston, Mass., 
1989. 

Griewank, A., Achieving logarithmic growth of temporal and spa- 
tial complexity in reverse automatic differentiation, Optimization 
Methods and Software, 1, 35-54, 1992. 

Haas-Laursen, D., Regional estimates of carbon dioxide fluxes de- 
duced with an inverse method, Ph.D. thesis, Georgia Inst. of 
Technol., Atlanta, 1997. 

Hartley, D., and R. Prinn, Feasibility of determining surface 
emissions of trace gases using an inverse method in a three- 
dimensional chemical transport model, J. Geophys. Res., 98, 
5183-5197, 1993. 

Heimann, M., The global atmospheric tracer model TM2, Tech. 
Rep. 10, Max-Planck-Institut f. Meteorol., Hamburg, Germany, 
1995. 

Heimann, M., and C. D. Keeling, A three-dimensional model of 
atmospheric CO2 transport based on observed winds, 2, Model 
description and simulated tracer experiments, in Aspects of Cli- 
mate Variability in the Pacific and the Western Americas, Geo- 
phys. Monogr. Ser., edited by D. H. Peterson, vol. 55, pp. 237- 
275, AGU, Washington, D.C., 1989. 

Heimann, M., C. D. Keeling, and I. Y. Fung, Simulating the at- 
mospheric carbon dioxide distribution with a three-dimensional 
tracer model, in The Changing Carbon Cycle; A Global Analy- 
sis, edited by J. Trabalka and D. Reichle, pp. 16-49, Springer- 
Verlag, New York, 1986. 

Hein, R., and M. Heimann, Determination of global scale emissions 
of atmospheric methane using an inverse modelling method, in 
Non-CO• Greenhouse Gases, edited by J. van Ham et al., pp. 
271-281, Kluwer, Norwell, Mass., 1994. 

Hein, R., P. Crutzen, and M. Heimann, An inverse modeling ap- 
proach to investigate the global atmospheric methane cycle, 
Global Biogeochem. Cycles, 11, 43-76, 1996. 

Houghton, J. T., L. M. Filho, B. Callander, N. Harris, A. Datten- 
berg, and K. Maskell (Eds.), Climate Change 1994 - Radiative 
Forcing of Climate Change, Cambridge Univ., New York, 1995. 

Iri, M., History of automatic differentiation and error estimation, 
in Automatic Differentiation of Algorithms: Theory, Implemen- 
tation, and Application, edited by A. Griewank and G. F. Corliss, 
pp. 3-16, SIAM, Philadelphia, Pa., 1991. 

Jacob, D. J., M. J. Prather, S.C. Wofsy, and M. B. McElroy, Atmo- 
spheric distribution of 85Kr simulated with a general circulation 
model, J. Geophys. Res., 92,6614-6626, 1987. 

Juedes, D., A taxonomy of automatic differentiation tools, in Au- 
tomatic Differentiation of Algorithms: Theory, Implementation, 
and Application, edited by A. Griewank and G. F. Corliss, pp. 
315-329, SIAM, Philadelphia, Pa., 1991. 

Kaminski, T., R. Giering, and M. Heimann, Sensitivity of the sea- 
sonal cycle of CO,• at remote monitoring stations with respect 
to seasonal surface exchange fluxes determined with the adjoint 
of an atmospheric transport model, Phys. Chem. Earth, 21,457- 
462, 1996. 

Kaminski, T., M. Heimann, and R. Giering, A coarse grid three- 
dimensional global inverse model of the atmospheric transport, 
2, Inversion of the transport of CO2 in the 1980s, J. Geophys. 
Res., this issue. 

Keeling, C. D., R. B. Bacastow, A. F. Carter, S.C. Piper, T. P. 



KAMINSKI ET AL.: ADJOINT MODEL AND JACOBIAN MATRIX 18,553 

Whorf, M. Heimann, W. G. Mook, and H. Roeloffzen, A three- 
dimensional model of atmospheric CO9_ transport based on ob- 
served winds, 1, Analysis of observational data, in Aspects of 
Climate Variability in the Pacific and the Western Americas, 
Geophys. Monogr. Ser., edited by D. H. Peterson, vol. 55, pp. 
165-236, AGU, Washington, D.C., 1989. 

Knorr, W., Satellitengestiitzte Fernerkundung und Modellierung 
des Globalen CO•_ -Austauschs der Landvegetation: Eine Syn- 
these, Ph.D. thesis, Max-Planck-Institut f. Meteorol., Hamburg, 
Germany, 1997. 

Knorr, W., and M. Heimann, Impact of drought stress and other fac- 
tors on seasonal land biosphere COo_ exchange studied through 
an atmospheric tracer transport model, Tellus, Ser. B, 47, 471- 
489, 1995. 

Law, R., and I. Simmonds, The sensitivity of deduced CO: sources 
and sinks to variations in transport and imposed surface concen- 
trations, Tellus, Ser. B, 48, 613-625, 1996. 

Law, R. M., CO: sources from a mass balance inversion: sensitivity 
to the surface constraint, Tellus, Ser. B, 51,254-265, 1999. 

Law, R. M., et al., Variations in modelled atmospheric transport of 
carbon dioxide and the consequences for COo_ inversions, Global 
Biogeochern. Cycles, 10, 783-796, 1996. 

Louis, J. F., A parametric model of vertical eddy fluxes in the at- 
mosphere, Boundary Layer Meteorol., 17, 187-202, 1979. 

Marchuk, G. I., Adjoint Equations and Analysis of Cornplex Sys- 
tems, Kluwer Acad., Boston, Mass., 1995. 

Pearman, G., and P. Hyson, Activities of the global biosphere as re- 
flected in atmospheric COo_ records, J. Geophys. Res., 85, 4468- 
4474, 1980. 

Rayner, P. J., and R. M. Law, A comparison of modelled responses 
to prescribed CO2 sources, Tech. Pap. 36, CSIRO Div. of Atmos. 
Res., Aspendale, Victoria, Australia, 1995. 

Rayner, P. J., I. G. Enting, R. J. Francey, and R. L. Langenfelds, 
Reconstructing the recent carbon cycle from atmospheric COo_, 
3aaC and 02/N2 observations, Tellus, Ser. B, 51,213-232, 1999. 

Rostaing, N., S. Dalmas, and A. Galligo, Automatic differentiation 
in Odyss6e, Tellus, Ser. A, 45, 558-568, 1993. 

Russel, G. L., and J. A. Lerner, A new finite-differencing scheme 
for the tracer transport equation, J. Appl. Meteorol., 20, 1 483- 
1498, 1981. 

Shah, P., Application of adjoint equations to estimation of parame- 
ters in distributed dynamic systems, in Automatic Differentiation 
of Algorithrns: Theory, Implementation, and Application, edited 
by A. Griewank and G. F. Corliss, pp. 181-190, SIAM, Philadel- 
phia, Pa., 1991. 

Talagrand, O., The use of adjoint equations in numerical modelling 
of the atmospheric circulation, in Automatic Differentiation of 
Algorithms: Theory, Implementation, and Application, edited by 
A. Griewank and G. F. Corliss, pp. 169-180, SIAM, Philadel- 
phia, Pa., 1991. 

Talagrand, O., and P. Courtier, Variational assimilation of meteoro- 
logical observations with the adjoint vorticity equation, I, The- 
ory, Q. J. R. Meteorol. Soc., 113, 1311-1328, 1987. 

Thacker, W. C., Automatic differentiation from an oceanographer's 
perspective, in Automatic Differentiation of Algorithrns: Theory, 
Implementation, and Application, edited by A. Griewank and 
G. F. Corliss, pp. 191-201, SIAM, Philadelphia, Pa., 1991. 

Thacker, W. C., and R. B. Long, Fitting dynamics to data, J. Geo- 
phys. Res., 93, 1227-1240, 1988. 

Tiedtire, M., A comprehensive mass flux scheme for cumulus pa- 
rameterization in large-scale models, Mon. Weather Rev., 117, 
1779-1800, 1989. 

Trampert, J., and R. Snieder, Model estimations biased by truncated 
expansions: Possible artifacts in seismic tomography, Science, 
271, 1257-1260, 1996. 

Watson, R., M. Zinyowera, and R. Moss (Eds.), Climate Change 
1995 - Impacts, Adaptations and Mitigation of Climate Change: 
Scientifio Technical Analyses: Contribution of Working Group II 
to the Second Assessment Report of the Intergovernmental Panel 
on Climate Change, Cambridge Univ. Press, New York, 1995. 

R. Giering, Jet Propulsion Laboratory, 4800 Oak Grove Drive, 
Pasadena CA 91109. (ralf@pacific.jpl.nasa.gov) 

M. Heimann and T. Kaminski, Max-Planck-Institut fiir Me- 
teorologie, Bundesstr. 55, D-20146 Hamburg, Germany. 
(heimann@dl•z.de; kaminski@dkrz.de) 

(Received September 2, 1998; revised February 26, 1999; 
accepted March 3, 1999.) 


